
Batch-based Group Key Management with Shared
Key Derivation in the Internet of Things

Luca Veltri, Simone Cirani, and Gianluigi Ferrari
Department of Information Engineering

University of Parma, Italy
Email: {luca.veltri, simone.cirani, gianluigi.ferrari}@unipr.it

Stefano Busanelli
Guglielmo Srl

Pilastro di Langhirano, Parma, Italy
Email: stefano.busanelli@guglielmo.biz

Abstract—Many applications for ad-hoc networks are based
on a multicast communication paradigm, where a single source
sends common data to many receivers. In these contexts, it is
possible to efficiently secure the multicast communications by
leveraging on a common secret key, denoted as “group key”,
shared by multiple users. In this paper, we propose a novel
centralized approach that efficiently addresses the problem of
deriving and managing a group key in generic ad-hoc networks
and Internet of Things (IoT) scenarios, reducing the computation
overhead due to group membership changes caused by user’s
joins and leaves. In particular, the proposed method takes
advantage of the assumption of two possible leave strategies:
(i) at a pre-determined time interval selected when the member
joins the group or (ii) at any unpredictable time interval, as in
the case of membership revocation.

Keywords—Key distribution, Multicast communication, Security,
Internet of Things

I. INTRODUCTION

According to a group communication paradigm, a single
member can originate and deliver a message to the whole
group of nodes, through multicast (or broadcast) communica-
tion services [1], and thus in a more efficient manner than
an equivalent unicast-based solution. The first applications
taking benefit of the group communications model, such as
online gaming and audio/video streaming [2], have historically
operated on the Internet. In recent years, the ever increasing
diffusion of ad-hoc (mostly wireless) networks has offered
a new fertile ground for the development of new types of
group-based applications. In scenarios such as wireless sensor
networks [3], mobile ad-hoc networks, and Internet of Things
(IoT) [4], a large number of applications (e.g., data dissemi-
nation, data gathering, peer-to-peer communications) need an
underlying multicast data delivery service.

Securing group communications consists in providing con-
fidentiality, authenticity, and integrity of messages exchanged
within the group, through suitable cryptography services [5],
and without interfering with the data path of the multicast
data flow1 [7]. The achievement of this goal in an efficient
and scalable manner is a challenging task since it requires
that a large and dynamically varying number of users share
cryptographic materials, even in the presence of unpredictable

1Iolus [6], for example, is a scheme that interferes with the normal packet
stream, since a group security intermediary has to decrypt and encrypt all the
packets transiting in its own group.

group membership changes due to new users entering (joining)
the network and to old users leaving the network. In fact, after
any membership change, the shared cryptographic materials
should be refreshed through a suitable rekeying operation,
so that a former group member has no access to current
communications (forward secrecy) and a new member has no
access to previous communications (backward secrecy) [8],
[9].

While authenticity and integrity protection in group com-
munications can be easily achieved through asymmetric cryp-
tography, like in traditional point-to-point communications
(e.g., through digital signature), the simplest and most scalable
way to provide data confidentiality within a multicast group
is to encrypt the data through symmetric cryptography, with a
secret key shared (only) by all users belonging to the group.
Such symmetric key is normally referred to as group key.

Distributing such secret group key to all the legitimate
users and updating it at any group membership change is a
problem known as Group Key Distribution or Multicast Key
Distribution (MKD) [10]. There are two main categories of
MKD protocols: centralized [11] or distributed [12]. According
to the former, the keys’ distribution task is assigned to a
single entity, denoted as Key Distribution Center (KDC). In
the case of the distributed approach instead, the group key
is established and maintained by the users themselves, in a
distributed fashion. The centralized MKD approach has several
advantages: (i) simplicity; (ii) a small number of exchanged
messages compared to other methods; (iii) the possibility of
operating on intrinsically broadcast channels, where the source
(which also acts as MKD server) sends data to all the possible
destinations. Distributed methods typically offer greater relia-
bility, since they do not require any centralized entity to trust,
but they have higher communication and computational costs
and are not applicable to asymmetric communication scenarios
where data cannot be exchanged between any pair of nodes.
For these reasons, in the rest of this paper we will focus on
centralized approaches.

The technique described in this work is based on a key
derivation scheme properly extended in order to deal with both
unpredictable leave events and collusive attacks. In particular,
we present a MKD protocol tailored for very dynamic ad-
hoc networks, either wired or wireless. Time is partitioned in
fixed-length intervals, each of them associated with a different
group key. Even if a user can join anytime (asynchronously),
it shall wait until the beginning of the next slot before
becoming a group member. This introduces a delay, on average

978-1-4673-2480-9/13/$31.00 ©2013 IEEE 1688



equal to half of the slot interval, but allows to reduce the
number of rekeying acts. Similarly, the planned leave of a
legitimate member shall also happen at the beginning of a
slot period. In other words, the protocol is slotted and adopts
a synchronous batch rekeying mechanism [13] that improves
efficiency without posing security threats. The protocol also
provides proper mechanisms to deal with unpredictable leave
events and also to resist against collusive attacks but only in
case no eviction occurs.

The aim of the protocol is to minimize the computational
burden of group members and the overhead, expressed in terms
of number of exchanged messages, while achieving a suffi-
ciently high security level. The proposed protocol can operate
on very dynamic scenarios with a large number (thousands) of
nodes and offers excellent performance under the assumption
of low rate of evictions.

The structure of this paper is as follows. Section II reviews
related work. In Section III, a new technique for solving the
problem of distributing group-shared secret keys for ad-hoc
communications is proposed and its performance evaluated in
relation to state-of-the-art protocols. In Section IV, the new
technique is applied to a realistic IoT application scenario.
Finally, concluding remarks are given in Section V.

II. RELATED WORK

In multicast group communications, a proper MKD proto-
col is required for generating and distributing a secret group
key the can be used to secure (encrypt) data sent from one
source to all destinations that are member of the same group.
Since multicast groups are often very dynamic, due to the join
of new members and the leave of old members, the MKD has
to handle such group membership changes by re-generating
and re-distributing new group keys.

As described in Section I, in a common centralized MKD
scenario, the KDC may share an individual long-term secret
key with every user of the network, while a shared short-term
key is used as group key and refreshed after any membership
change (or programmatically) using the long-term keys. How-
ever, this plain centralized solution is not scalable since the
number of communications required for the rekeying operation
is linear in the size of the current group (denoted as n).
These results should be compared with the known lower bound
O(log2 n) [9].

Wong et al. [8] proposed the Logical Key Hierarchy (LKH)
approach, based on key graphs, where keys are arranged into a
hierarchy, and the key server maintains all the keys. The LKH
scheme makes use of symmetric-key encryption (as the only
cryptographic primitive), and has a number of communications
approaching the lower bound in [9].

If a user wants to join the group, it sends a join request to
the key server. The user and key server mutually authenticate
each other using a protocol such as Secure Socket Layer
(SSL). If authenticated and accepted into the group, the user
shares with the key server a symmetric key, called the user’s
individual key.

In [14], the authors propose the MARKS protocol, which
is scalable and requires no key update messages. However,
MARKS only works if the leaving time of a member is set

when the member joins the group, so that members cannot
be expelled. Besides the scheduled leaves, there is also the
possibility of unpredictable leaves, which occurs when a user
is evicted from the group. In this case, it is unsafe to delay
the rekeying until the next time slot, and it is necessary to
provide a mechanism which allows immediate revocation of
all the cryptographic materials known by the evicted user.

In a previous work [15], we presented a very simple
algorithm for key derivation, which however does not specify
any management scheme to deal with unpredictable leave
events and does not protect against collusive attacks. In this
work, in order to allow rapid unpredictable evictions, we super-
impose an existing asynchronous key management mechanism,
denoted as Logical Key Hierarchy (LKH) [8], to our slotted
protocol.

III. NEW GROUP KEY MANAGEMENT MECHANISM

In this section, a new group key distribution mechanism is
presented. The proposed mechanism allows a server (KDC) to
efficiently distribute a group key to all members of a multicast
group dealing with dynamic joins and leaves of users as
group members. The proposed solution is first summarized
in Subsection III-A and then detailed in Subsections III-B
and III-C.

A. Protocol Overview

Let us consider a multicast group communication scenario
in which the same data has to be securely sent to a group of
destinations. In order to guarantee data confidentiality, the sent
message has to be encrypted with a secret (group) key shared
by, and only by, all group members. We consider a dynamic
scenario in which, at any time, a new user may join the system
as new group member and an old user may leave the group.
As described in the previous sections, this requires a suitable
group key distribution mechanism, able to distribute a new key
to all members upon every change of group membership. We
consider a key distribution scenario based on a trusted KDC
that takes care of: (i) maintaining a secure association with
all users belonging to the system; (ii) generating a new group
key every time the group membership changes; (iii) efficiently
managing the distribution of the new group key to all group
members, guaranteeing both forward and backward secrecy.

In a more general scenario, join and leave operations occur
unpredictably, in a completely asynchronous and dynamic way.
However, in order to optimize and significantly reduce the
complexity and the number of exchanged messages required
to handle group member changes and group key re-distribution
(rekeying), a more practical method is to allow the KDC to
handle simultaneously a number of membership changes. This
can be achieved by splitting time into intervals (sometimes
referred to as “time slots” or, simply, “slots”) and letting
the KDC handle all membership changes that occur in the
same time interval. Key distribution mechanisms that work in
this way are often referred to as “batch” methods. Note that
our proposed method applies when these time intervals have
the same length or different lengths. However, very common
scenarios are those in which membership changes are handled,
for practical reasons, in a daily or monthly manner: this is
the case, for example, of applications that consider service

1689



subscriptions with specific durations (expressed exactly in days
or months). Other common possible time slot units can be
minutes, seconds, or years.

Although the time slot in which a new user wants to join
the system is in general difficult (or impossible) to predict
(as it can apply at any time), there are many application
scenarios in which the duration of the membership of a user
is specified at the moment when the user joins the system,
possibly further extended on the basis of a renewal strategy.
Service subscriptions are often handled by applications in this
way, with the possibility (in a limited subset of cases) of
considering some form of revocation mechanisms in order
to handle situations (often seen as exceptions) in which a
membership has to be revoked in advance before its natural
expiration time (for example, if a user unexpectedly leaves
the system or if he/she is removed due to a misuse or for
administrative reasons).

In spite of the above considerations, the majority of the
proposed key management mechanisms do not take advantage
of this operation and simply consider any leave event as not
pre-determined, as it always occurs randomly.

On the opposite, we explicitly consider two different kinds
of leave events: (i) “pre-determined” leave events, when the
leave time is selected in advance when the user joins the
network or when it refreshes his/her membership, as in the
case of a natural membership expiration; (ii) “unpredictable”
leave events, when the time of leave does not coincide with the
one selected at the time of joining or refreshing, for example in
the case of explicit membership revocation. In our method, like
in [14], both kinds of leave events are explicitly considered,
taking the advantage of the balance of the former leaving
strategy with respect to the latter.

We consider a different group key Ki for each time slot
i with i = 0, 1, 2, . . . , N . In order to efficiently handle both
kinds of leave events, the group key is obtained through a
one-way function of two sub-keys K1i and K2:

Ki
.
= f(K1i,K2) i = 0, 1, 2, . . .

with K1i and K2 properly managed in order to handle both
kind of leaves. In particular, the values K1i are associated
to every time slots ∆ti (with i = 0, 1, 2, . . . , N ); they are
pre-determined and provided to group members according to
their assigned membership duration. The values of K1i are
generated in an intelligent and secure manner in order to
simplify the assignment to joining users, by providing only
some root secret materials that can be used by the member
to further derive all K1i values associated with all time slots
he/she subscribed for. K1i are then used to handle all new
join and “pre-determined” leave events.

On the other hand, K2 is used to handle all “unpredictable”
leave events. It is changed and re-distributed by the KDC to
all (and only) group members, in a scalable way, similarly to
other mechanisms already proposed in the literature.

Since the amount of operations and exchanged messages
differ for managing of the sub-keys K1i and K2, the total
amount of operations and exchanged messages is a function

of the rate of the “unpredictable” leave events over join and
“pre-determined” leave events.

Details of how K1i and K2 are derived and managed are
hereafter described.

B. Protocol Details

The objective of the proposed key management protocol is
to provide a group key that can be securely shared by (and
only by) all group members, taking into account and properly
handling:

1) regular membership changes, that are due to new
users that join the group and active members that
leave the group for “clean” membership expiration
(“pre-determined” leaves);

2) exceptional active member leaves, e.g., in the case
of explicit membership revocation (“unpredictable”
leaves).

In order to take into account membership changes of type 1,
the overall time span is considered divided into a sequence
of N time slots ∆ti with i = 0, 1, 2, . . . , N and in general,
∆ti 6= ∆tj for i 6= j. In practice, however, it will be common
to have ∆ti = ∆tj = ∆t ∀i, j, with ∆t equal to standard time
units, such as a minute, a second, a month, etc. For each time
interval ∆ti, in the following referred as “slot” i, a different
group key Ki is determined. Consider now a user member x
that will belong to the group from time ta to time tb + 1, i.e.
from time slot ∆ta to time slot ∆tb: he/she will receive the
subset of keys SX = {Ki, with i = a, a + 1, a + 2, . . . , b}.

According to the above approach, as far as only member-
ship changes of type 1 are considered, the KDC is requested to
generate all keys Ki and give to each new incoming member
only the subset of keys corresponding to the time slots over
which he/she will belong to the group. If the member will stay
for a total of m time slots, this will require the KDC to give
to the new member m different keys. In order to limit the total
amount of cryptographic material that the KDC has to send to
each new member, a proper distribution protocol is adopted.

However, regular membership changes (type 1) are not the
only events that require the assignment and distribution of a
new group key (i.e., a rekeying operation). In the case of an
unpredictable leave event (type 2) in time slot ∆th of member
y that negotiated with KDC a membership from time slot ∆ta
to time slot ∆tb, at least all previously assigned keys (from
Kh + 1 to Kb) must be re-assigned and distributed to all valid
group members. This is needed in order to prevent y to decrypt
messages that are sent after time slot ∆th with valid keys that
he/she received by the KDC in joining the group.

To handle both types of membership changes in a secure
and flexible way, the following key derivation and distribution
mechanism is proposed.

Let us consider N time slots, with N = 2D. Each time
slot ∆ti is associated with a key Ki defined as:

Ki
.
= f(K1i,K2) i = 0, 1, 2, . . . , N − 1

where Ki, K1i, and K2 are fixed or variable-length bit strings,
and f(, ) is a cryptographic one-way function that returns a bit

1690



string of length equal to or greater than Ki. If f(.) returns a bit
string of length greater than Ki, a truncation can be applied. A
cryptographic hash function H() (for example SHA1 or MD5)
can be used in place of f(.) as follows:

Ki
.
= f(K1i,K2) = H(K1i‖K2) i = 0, 1, 2, . . . , N − 1

The sub-key K1i is defined as follows. Consider a binary
tree with depth equal to D + 1, including the root node (level
0). At any level h, starting form 0, the binary tree has 2h

nodes. The last level is D, leading to 2D = N leaves. Let’s
indicate with (h, j) the node j of level h, with 0 ≤ h ≤ D
and 0 ≤ j ≤ 2h − 1. Each node (h, j) of the tree, excluding
the last level D, has two child nodes that are respectively: left
child (h + 1, 2j) and right child (h + 1, 2j + 1). Each node
(h, j) is associated to a value xh,j that is derived by the value
of parent node as follows:

xh+1,2i
.
= f0(xh, i)

xh+1,2i+1
.
= f1(xh, i)

or equivalently:

xh,i
.
=

{
f0(xh−1,i/2) i = 0, 2, 4, . . . , 2h − 2
f1(xh−1,(i−1)/2) i = 1, 3, 5, . . . , 2h − 1

where f0() and f1() are two different cryptographic one-way
functions. They could be also defined based on the same
function f() as follows:

f0(x)
.
= f(x)

f1(x)
.
= f(x + 1)

In this case we can write xh,i (recursively) as:

xh,i
.
= f(xh−1,bi/2c + (i mod 2))

By repeatedly applying the previous equations, starting from
the value xh,i of node (h, i) it is possible to generate all values
associated to the nodes of the sub-graph that has (h, i) as root.
At the same time the value xh,i of node (h, i) can be obtained
from the value associated to any node along the path from the
xh,i to the tree’s root (0, 0).

Given such a binary tree, we define the sub-key K1i equal
to the value of the leaf i, that is:

K1i
.
= xD,i

Then, K1i can be obtained from the value associated to any
node along the path from the leaf i to the tree’s root, or
equivalently from any values from xD,i to x0,0. At the same
time, starting the value xh,i of node (h, i) it is possible to
obtain all sub-key values in the interval from 2D−h · i to
2D−h ·(i+1)−1 included, that is all sub-keys from K12D−h·i
to K12D−h·(i+1)−1. Note that, as a special case, the value x0,0

can generate all sub-keys from K10 to K1N−1.

This property, can be used by the KDC to distribute the
K1i sub-keys to new members in a very efficient way, reducing
from O(N) to O(log(N)) the number of values that the KDC
has to pass to a new member in order to set sub-keys for all

the temporal period that the new member will belong to the
group.

The worst case occurs when the node joins the group
from time slot 1 to time slot N-1, included. In this case,
2 · (log2(N)− 1) keys need to be distributed: xD,1, xD,N−1,
xD−1,1, xD−1,N2 −1

, . . .x2,1, x2,2.

Let’s now consider the sub-key K2. The value K2 is
maintained constant as far as only regular membership changes
happen. As soon as a unpredictable leave event occurs, all
un-expired keys of the leaving member must be revoked and
replaced by new ones. This objective is reached by replacing
the K2 that in turn will change all successive group keys Ki

that are generated by the values of K1i and K2.

When a new K2 value is generated, this has to be dis-
tributed by the KDC to all remaining valid group members.
This operation is very similar to the one faced by current
centralized key distribution protocols: for example (LKH) [8]
can be used.

C. Managing Keys for Unlimited Time Intervals

The described protocol assumes that the number of time
slots is fixed and equal to n = 2D. Therefore, it is inevitable
that the key distribution mechanism is doomed to come to an
end eventually. In this section we sketch a simple extension
of the protocol to allow the KDC to handle unlimited time
intervals, without requiring each key distribution tree to be
kept in memory but just a slightly increased computational
effort.

Time is split into intervals Ik of length ∆T and periods Πi

of length n · ∆T . Each period Πi is associated with a given
seed si, which is equal to the value of the root xi

0,0 of a tree.
Within a given period, the protocol works exactly as described
above. If a subscription lasts beyond the end of a period, it
is necessary to distribute keys from more then one tree. Each
tree can be computed “on the fly” in the following way:

xi
0,0

.
= g(si)

.
= g(h(si−1))

where s is a seed, h(.) is a “one-way” function (i.e. hashing
function), and g(.) is a “blinding” function (i.e. XOR func-
tion). For instance, possible choices for h(.) and g(.) are

h(si) = H(si−1) = Hi+1(s)

g(si) = s⊕ h(si) = s⊕Hi+1(iv)

where H is a hashing function and iv is an initial vector.

The key xh,i can be calculated as

xh,i = xP
h,I = f(f(. . . f(︸ ︷︷ ︸

h times

g(sP−1) + a0) + a1) . . .) + ah−1︸ ︷︷ ︸
h bits

)

where P = bi/2hc is the index of the period, I = i mod 2h

is the index of the period’s interval, and a0, a1, . . . , ah−1 are
the h bits of the binary representation of I .

D. Performance Evaluation

The performance of the proposed key distribution mecha-
nism is compared with current state-of-the-art solutions. The

1691



performance of the mechanism can be evaluated in terms of
the following metrics:

• amount of cryptographic material to be sent to a
particular node or group members (K1 and K2 sub-
keys);

• number of messages to be sent within the group, either
from the KDC or relayed by group members.

When a node joins the group, it must receive both the
current K2 sub-key and the set of information needed to
generate all the K1 sub-keys for its membership interval, which
has an upper bound of 2 · (log2(N)− 1) over a single period.
This information can be sent in a single message and is the
same amount of information that is distributed in MARKS.

When a node leaves the group gracefully, no information
needs to be transmitted. In such a case, the new protocol
still performs as MARKS, which requires no communication,
while it provides better results than LKH, which requires a
re-organization of the nodes’ topology.

Finally, in the case of node eviction, the new protocol
requires only the K2 sub-key to be retransmitted. The perfor-
mance in such a case depends exclusively on the distribution
strategy adopted. For instance, given a group of n members,
the transmission of unicast messages requires n−1 messages.
In order to achieve better results, we superimpose the LKH
distribution strategy, thus providing the same performance as
LKH. As already said in Section II, MARKS only works
if the leaving time of a member is set when the member
joins the group and therefore it does not apply to the case
of unpredictable leave events, such as evictions.

The proposed key distribution protocol offers the best
performance of MARKS and LKH in case of join and leave
events, respectively. Moreover, our approach takes into account
the case of node eviction, thus offering a more exhaustive
coverage of the events that might occur in the group’s life
cycle. Better performance derives from the fact that only in
case of key revocation events explicit communication between
KDC and group member is required.

IV. AN APPLICATION FOR DATA AGGREGATION IN IOT

As aforementioned in Section I, the scheme proposed in
this manuscript can be employed in several types of ad-hoc
networks. In this section, we will present a case study for data
aggregation in the IP-based Internet of Things (IoT).

In-network data aggregation in wireless sensor networks
consists in executing certain operations (such as sum and
average) on intermediate nodes in order to minimize the
amount of transmitted messages and processing required on
nodes so that only significant information is passed along in
the network. This leads to several benefits, i.e. energy saving,
which are crucial for constrained environments, such as low-
power and lossy networks. Data aggregation is a multipoint-
to-point communication scenario, which requires intermediate
nodes to operate on received data and forward a function
of such input data. In those scenarios where privacy on
transmitted data is an issue, it might be required to send
encrypted data. In order to do so, a group key can be used to
encrypt sent data and decrypt received data prior to aggregation

in a much more efficient scheme than employing a different
key between each couple of nodes.

In this work, we applied the proposed scheme to a par-
ticular application scenario where wireless sensors running
the Contiki OS [16]. Contiki is an open source operating
system for the Internet of Things. Contiki allows tiny, battery-
operated low-power systems communicate with the Internet.
Contiki is used in a wide variety of systems such as city sound
monitoring, street lights, networked electrical power meters,
industrial monitoring, radiation monitoring, construction site
monitoring, alarm systems, and remote house monitoring.

Contiki includes the uIP TCP/IP stack that provides Contiki
with TCP/IP networking support. uIP provides the protocols
TCP, UDP, IP, and ARP. Secure communication is integrated
in the Contiki with a lightweight implementation of the IPSec
protocol [17]. IPSec in Contiki requires a hardcoded encryp-
tion key to be used, which is therefore static. In this work,
a dynamic encryption key configuration mechanism has been
implemented in order to make it possible to integrate the
Contiki IPSec with our key distribution protocol.

In this scenario, sensor nodes send sensed data to a collect-
ing node securely using IPSec. The presence of a KDC which
can communicate securely with each participating node is
assumed. The proposed protocol makes it possible to insert and
remove nodes seamlessly. This ensures that only authorized
nodes are able to exchange data invisible to eavesdroppers.
Eavesdroppers are also prevented by trying brute force attacks,
as the encryption key is changed automatically over time even
if no change in the group membership occurs.

V. CONCLUSIONS

In this paper, we have presented an innovative mechanism
for distributing a secret group key to all group members,
in a dynamic scenario in which members join and leave
the multicast group. The proposed protocol, differently from
the majority of the current mechanisms, considers both the
cases in which a member leaves the group in a predictable
manner, for example for membership subscription expiration,
or in a unpredictable manner, such as in case of member-
ship revocation, while ensuring both backward and forward
secrecy. In order to optimize and significantly reduce the
number of exchanged messages required for handling group
member changes and group key re-distribution (rekeying), time
is split into time-intervals, thus letting the KDC to handle
together all membership changes that occur in the same time
interval (batch method). For each time interval a new key
is automatically derived by all active members, without any
interaction with the KDC. In such way both join and pre-
determined leave event can be easily handled. Only in case of
key revocation events explicit communication between KDC
and group member is required, allowing the new protocol to
better perform than current key distribution protocols. The
proposed scheme has been integrated in an application scenario
where Contiki OS-based sensor nodes disseminate sensed data
securely using IPSec. This approach makes it is possible to
provide group-level confidentiality and integrity, together with
per-node authentication and non-repudiation.

1692



ACKNOWLEDGMENT

The work of Luca Veltri, Simone Cirani, and Gianluigi
Ferrari is funded by the European Community’s Seventh
Framework Programme, area “Internetconnected Objects”, un-
der Grant no. 288879, CALIPSO project - Connect All IP-
based Smart Objects. The work reflects only the authors views;
the European Community is not liable for any use that may
be made of the information contained herein.

REFERENCES

[1] S. Deering, “Host extensions for IP multicasting,” no. RFC 1112,
August 1989, the Internet Engineering Task Force (IETF).

[2] T. Turletti and C. Huitema, “Videoconferencing on the Internet,”
IEEE/ACM Trans. Networking, vol. 4, no. 3, pp. 340–351, June 1996.

[3] I. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “Wireless
sensor networks: a survey,” Computer Networks, vol. 38, no. 4, pp.
393–422, 2002.

[4] E. Schoch, F. Kargl, M. Weber, and T. Leinmuller, “Communication
patterns in VANETs,” IEEE Commun. Mag., vol. 46, no. 11, pp. 119–
125, November 2008.

[5] M. Verma and D. Huang, “SeGCom: secure group communication
in VANETs,” in Proc. IEEE Intl. Conf. on Consumer Comm. and
Networking (CCNC), Las Vegas, NV, USA, January 2009, pp. 1–5.

[6] S. Mittra, “Iolus: A framework for scalable secure multicasting,” vol. 27,
no. 4, pp. 277–288, 1997.

[7] S. Rafaeli and D. Hutchison, “A survey of key management for secure
group communication,” ACM Comput. Surv., vol. 35, pp. 309–329,
September 2003.

[8] C. K. Wong, M. Gouda, and S. Lam, “Secure group communications
using key graphs,” IEEE/ACM Trans. Networking, vol. 8, no. 1, pp.
16–30, February 2000.

[9] D. Micciancio and S. Panjwani, “Optimal communication complexity
of generic multicast key distribution,” IEEE/ACM Trans. Networking,
vol. 16, August 2008.

[10] A. Ballardie, “Scalable multicast key distribution,” no. RFC 1949, May
1996, the Internet Engineering Task Force (IETF).

[11] J. Lin, K. Huang, F. Lai, and H. Lee, “Secure and efficient group
key management with shared key derivation,” Computer Standards &
Interfaces, vol. 31, no. 1, pp. 192–208, 2009.

[12] P. Lee, J. Lui, and D. Yau, “Distributed collaborative key agreement and
authentication protocols for dynamic peer groups,” IEEE/ACM Trans.
Networking, vol. 14, no. 2, pp. 263–276, April 2006.

[13] X. Li, Y. Yang, M. Gouda, and S. Lam, “Batch rekeying for secure
group communications,” in ACM Proc. Intl. Conference on World Wide
Web (WWW). Hong Kong, Hong Kong: ACM, May 2001, pp. 525–
534.

[14] B. Briscoe, “MARKS: Zero side effect multicast key management using
arbitrarily revealed key sequences,” in Networked Group Communica-
tion, ser. Lecture Notes in Computer Science, L. Rizzo and S. Fdida,
Eds. Springer Berlin / Heidelberg, 1999, vol. 1736, pp. 301–320.

[15] S. Busanelli, G. Ferrari, and L. Veltri, “Short-lived key management
for secure communications in VANETs,” in Intl. Conference on ITS
Telecommunications (ITST). Saint Petersburg, Russia: IEEE, August
2011, pp. 613–618.

[16] The Contiki Operating System. [Online]. Available: http://www.contiki-
os.org

[17] S. Raza, S. Duquennoy, T. Chung, D. Yazar, T. Voigt, and U. Roedig,
“Securing Communication in 6LoWPAN with Compressed IPsec,” in
Proceedings of the International Conference on Distributed Computing
in Sensor Systems (IEEE DCOSS 2011), Barcelona, Spain, June 2011.

1693


